Constructing Knot Tunnels Using Giant Steps

نویسندگان

  • SANGBUM CHO
  • DARRYL MCCULLOUGH
چکیده

In [6], Goda, Scharlemann, and Thompson described a general construction of all tunnels of tunnel number 1 knots using “tunnel moves”. The theory of tunnels introduced in [3] provides a combinatorial approach to understanding tunnel moves. We use it to calculate the number of distinct minimal sequences of such moves that can produce a given tunnel. As a consequence, we see that for a sparse infinite set of tunnels, the minimal sequence is unique, but generically a tunnel will have many such constructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cabling Sequences of Tunnels of Torus Knots

In previous work, we developed a theory of tunnels of tunnel number 1 knots in S. It yields a parameterization in which each tunnel is described uniquely by a finite sequence of rational parameters and a finite sequence of 0’s and 1’s, that together encode a procedure for constructing the knot and tunnel. In this paper we calculate these invariants for all tunnels of torus knots.

متن کامل

The Tree of Knot Tunnels

We present a new theory which describes the collection of all tunnels of tunnel number 1 knots in S (up to orientation-preserving equivalence in the sense of Heegaard splittings) using the disk complex of the genus-2 handlebody and associated structures. It shows that each knot tunnel is obtained from the tunnel of the trivial knot by a uniquely determined sequence of simple cabling constructio...

متن کامل

Classification of unknotting tunnels for two bridge knots

In this paper, we show that any unknotting tunnel for a two bridge knot is isotopic to either one of known ones. This together with Morimoto–Sakuma’s result gives the complete classification of unknotting tunnels for two bridge knots up to isotopies and homeomorphisms. AMS Classification 57M25; 57M05

متن کامل

Involutions of Knots That Fix Unknotting Tunnels

Let K be a knot that has an unknotting tunnel τ . We prove that K admits a strong involution that fixes τ pointwise if and only if K is a two-bridge knot and τ its upper or lower tunnel.

متن کامل

Classification of Alternating Knots with Tunnel Number One

An alternating diagram encodes a lot of information about a knot. For example, if an alternating knot is composite, this is evident from the diagram [10]. Also, its genus ([3], [12]) and its crossing number ([7], [13], [17]) can be read off directly. In this paper, we apply this principle to alternating knots with tunnel number one. Recall that a knot K has tunnel number one if it has an unknot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008